
April, 2024

Asynchronous Messaging Design Pattern for AWS Lambda Services

Scott Gross
theleedz.com

Overview

The Leedz runs on AWS as a collection of Lambda functions which call on resources like DynamoDB
and SES, the email sending service. Each time a user posts or buys a leed, the Lambda receiving the
API request chains together several subroutines before returning data to the client. Instead of calling
these functions serially and making the user wait for them all to return in order, the Leedz does its
bookkeeping asynchronously for a better, faster user experience. This paper shows how to do it.

The Problem

Most client actions trigger a chain of functions and infrastructure service requests on the back-end.
When a user posts a leed, for example, the lambda handler calls on AWS Location Service to check
for an existing booking matching the same trade, date and location. The client should wait for this
check to succeed before proceeding or receive an error code indicating the post has failed.

The dashed line suggests, however, that once a leed has been validated and added to the DB there
are other bookkeeping and messaging tasks the user shouldn't have to wait for. For example, sending
an email to each of the users subscribed to that trade. The system can compose the response data
and return control to the client immediately while performing these additional functions in the
background and potentially in parallel.

Functional Code Separation

The first step to implementing these helper functions asynchronously is to break them out of the main
lambda function and into their own files. This follows the AWS best practice called
Functional Code Separation.

In the Lambda console create a new Lambda function for each subroutine and name it according to
the task it performs. Under Permissions assign the function an existing IAM execution role or
create a new role with default permissions.

In either case the ability to call one function from another is not included by default. In the IAM
console click the role attached to the new function, Add Permissions | Create Inline Policy, select
the JSON tab, and add the block below:

 {
 "Sid": "LambdaCallsLambda",
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "*"
 },
* 'Sid' is an optional user-generated identifier for the policy

The entry-point for each helper lambda function will be its lambda_handler(event, context)
function. The event parameter will contain the data passed from the calling function in the main file.

notifyUsers.py
def lambda_handler(event, context):

leed_id = event['id']
trade_name = event['trade']
seller = event['seller']
. . . remainder of function . . .

Complete the subroutine code and any helper functions it relies upon into the Lambda's Code section
and Deploy the function. Best practice dictates creating a Test right away to ensure that if (when) it
doesn't work later on, you can more quickly track down the problem in the caller.

In the calling Lambda, change the synchronous function calls to a new format that uses the boto3
SDK to broker messaging between Lambdas in different files. The Payload is the application-level
dictionary you define with the data the helper requires. It becomes the event parameter of the helper
function's lambda_handler above.

addLeed.py
 func_args = {
 'id':'123456789',

 'trade':'caricatures',
'seller':'scott.gross'

 }
 lambda_function = boto3.client('lambda')
 lambda_function.invoke(FunctionName='notifyUsers',
 InvocationType='Event',
 Payload= json.dumps(func_args))

The Invocation-type flag is set to 'Event'. This instructs AWS to execute the function
asynchronously, send the payload through the event parameter, and return immediately. To call a
function defined in another file synchronously and wait for the return value, use the same code block
with InvocationType='RequestResponse'

From Spider to Controller

The code now looks like a spider with the main controller in the middle calling subroutines on its arms.
The problem emerges that each subroutine relies on its own utility functions to process the DB output,
pretty-format dates, concatenate strings, format emails, generate HTML and communicate with other
AWS services. Often this utility code must be duplicated across files or separated into yet more helper
lambda functions.

Each call to lambda_function.invoke() involves marshaling and unmarshaling the same data
to and from JSON over and over, much of it unused by the helper function. Multiple redundancies and
code duplication frustrate testing and inevitably cause bugs. The legs of the spider end up weighing
more than the body.

A better solution is to concentrate the shared utility functions and handles to other infrastructure
services in a handful of asynchronous controller functions. The controllers delegate tasks to
different subroutines in their same scope using a grand match statement in the main lambda_handler
and the 'function' parameter of the Payload to determine which function to call.

addLeed.py (main branch)
payload = {

'function':'notifyUsers',
'id': '123456789',
'trade': 'caricatures',
'seller': 'scott.gross'

}
lambda_function = boto3.client('lambda')

 lambda_function.invoke(FunctionName='async_email_helper',
 InvocationType='Event',
 Payload= json.dumps(payload))

async_email_helper.py (controller)
def lambda_handler(event, context):

 function_name = event['function']
 match function_name:

 case 'notifyUsers':
leed_id = event['id']
notifyUsers(leed_id)

The lambda_handler() inside addLeed.py calls the controllers asynchronously. Each call returns
immediately to the main branch, but sends an Event to the helper which processes the request using
whatever resources are required. This may include calling another handler synchronously and waiting
for return data before completing its task.

This design centralizes the utility functions required to compose emails and HTML in one file where
they can be more easily debugged. The code for marshalling and unmarshalling JSON need not be
repeated as data can be passed to the subroutines in function arguments. The main Lambda function
can offload 3rd party API calls and time-intensive processing tasks to asynchronous helpers without
waiting for their completion so long as each subroutine does not depend on another for its input. They
may execute in parallel or even after the client app has received its response.

Conclusion

As an AWS app grows and adds more services, a distinction arises between request-response
functions for which the user can be expected to wait, and those which occur in the background on their
own time. The Asynchronous Invocation Pattern with controllers aligns with best practices for AWS
Lambda functions. It allows for efficient utilization of resources and enables parallel processing of
tasks. Functional code separation promotes modularity, which eases testing and debugging. This
design pattern is well-supported by AWS and integrates with various infrastructure SaaS like
Amazon Cognito, Location, SMS Notification and Email. It is one way in which the Leedz puts the
user experience first.

